VEGFER-2 INHIBITORS AND QUINAZOLINE-BASED ANTICANCER AGENTS

Islam Otify¹, Helmy Sakr *¹, Rezk R. Ayyad¹, Alaa Elwan¹

¹Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt

* Corresponding authors: Email: helmysakr@azhar.edu.eg

ABSTRACT

Inhibitors of vascular endothelial growth factor receptor -2 (VEGFR-2) are crucial biological targets for the development of novel anticancer medications. Quinazoline also plays an important role as one of the building elements of numerous anticancer drugs. Thus, a review of the literature on VEGFR-2 inhibitors and Quinazoline-based anticancer medicines has been completed. We introduced VEGFR-2 inhibitors now undergoing clinical evaluation, such as Gefitinib, Erlotinib, Vandetanib, Afatinib, Lenvatinib, Cabozantinib, Sorafenib and Regorafenib in our survey. Additionally, VEGFR-2 inhibitors that are under development were introduced.

Keywords: Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors; Quinazoline; Anti-cancer agents

1. Introduction

Cancer is a major public health problem worldwide and is the second leading cause of death. In 2020, the diagnosis and treatment of cancer was hampered by the coronavirus disease 2019 (COVID-19) pandemic. For example, reduced access to care because of health care setting closures resulted in delays in diagnosis and treatment that may lead to a short-term drop in cancer incidence followed by an ultimately increased mortality (Rebecca et al. 2021).
Diseases of genes cause Cancer:

Inherited or somatic alterations in genes are what make a normal cell ignore growth-controlling signals and form a tumor that eventually leads to the destruction of the organism (Shipitsin et al. 2008). Possibly as many as 30% of cancers are caused by smoking, while another 30% are diet related. Carcinogenic chemicals in smoke, food and the environment may cause cancer by inducing gene mutations or interfering with normal cell differentiation. The birth of a cancer (carcinogenesis) can be initiated by a chemical—usually a mutagen but other triggering events, such as exposure to further mutagens, are usually required before a cancer develops (Patrick et al. 2013).

2. VEGF receptor

Vascular endothelial growth factor (VEGF) has been identified as the most common regulator of tumor angiogenesis, vascular permeability, endothelial cell activation, proliferation and migration (Ferrara et al. 2003). The VEGF family of genes contains at least 7 members, including the viral genome–derived VEGF-E, whereas the VEGFR family of genes has 3 to 4 members depending on the vertebrate species. VEGF-A and its receptors VEGFR-1 and VEGFR-2 play major roles in physiological as well as pathological angiogenesis, including tumor angiogenesis. VEGF-C/D and their receptor VEGFR-3 can regulate angiogenesis at early embryogenesis but mostly function as critical regulators of lymphangiogenesis (Shibuya et al. 2011). VEGFR-2 is over-expressed in several malignancies, including hepatocellular carcinoma, breast, colorectal, ovarian and thyroid cancer, melanoma and medulloblastoma (Otrock et al. 2007, Gershtein et al. 2010, Smith et al. 2010).
3. VEGFR inhibitors under clinical assessment

3.1 Gefitinib

Gefitinib (Iressa®) (1) was approved by the FDA in 2003 for the treatment of locally advanced or metastatic non-small-cell lung cancer (NSCLC) (Brehmer et al. 2005).

Regarding the effectiveness of Gefitinib within NSCLC patients having an epidermal growth factor receptor (EGFR) mutated status, Gefitinib was found to have elevated efficacy levels in salvage and within NSCLC patients carrying the exon 19 deletion mutation and/or exon 21 Leu858Arg mutation status. (Kanagalingam et al. 2023)

![Chemical structure of Gefitinib](image1)

3.2 Erlotinib

In 2004, Erlotinib (Tarceva®) (2) was approved by FDA for treating NSCLC. Furthermore, in 2005, FDA approved Erlotinib in combination with Gemcitabine for the treatment of locally advanced, unrespectable, or metastatic pancreatic cancer. Erlotinib acts as a reversible tyrosine kinase inhibitor (Shepherd et al. 2005). Although in 2023, The results of this prospective phase II study will provide evidence on the safety and antitumor activity of combination therapy with Ramucirumab plus Erlotinib in patients with EGFR exon 19 deletion-positive treatment-naïve NSCLC with high PD-L1 expression (Kawachi et al. 2023).

![Chemical structure of Erlotinib](image2)
3.3 Vandetanib

Vandetanib (Caprelsa®) (3) inhibits VEGFR-2, EGFR and RET- TS (Morabito et al. 2010).

In April 2011, Vandetanib became the first drug to be approved by the FDA for treatment of late-stage (metastatic) medullary thyroid cancer in adult patients who are ineligible for surgery (Commander et al. 2011). Genotyping is a predictor of response to Vandetanib and Cabozantinib since patients with an M918T mutation presented with a greater response to Vandetanib in comparison with M918T-negative patients (54.5% vs. 32%) (Martins et al. 2023)

![Chemical structure of Vandetanib](image)

3.4 Afatinib

Afatinib (Gilotrif®) (4) was approved by the FDA in 2013 for NSCLC treatment. It acts as an irreversible covalent inhibitor of the receptors tyrosine kinase (RTK) for EGFR and (HER2) (Ismail et al. 2016). The results support the notion that Afatinib has an overall advantage over first-generation EGFR-TKIs in the treatment of rare EGFR mutations and is adequate as a first-line treatment preference for NSCLC patients with major uncommon and compound mutation categories among rare EGFR mutations (Jiang et al. 2023)

![Chemical structure of Afatinib](image)
3.5 Cabozantinib

Cabozantinib (5) is a multikinase inhibitor that targets VEGFR-2, MET, and RET-TS (Yakes et al. 2011). Cabozantinib was granted orphan-drug status by the FDA in 2012 for progressive metastatic medullary thyroid neoplasms (Norman et al. 2015). Cabozantinib is associated with a fast and significant volume reduction of brain radionecrosis appearing after SRS and concomitant immunotherapy (Lolli et al. 2023)

3.6 Lenvatinib

Lenvatinib (6) is a potent dual inhibitor of VEGFR-2 (IC$_{50}$ = 4.0 nM) and of VEGFR-3 (IC$_{50}$ = 5.2 nM). On February 13, 2015, the U. S. FDA approved Lenvatinib for the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer (Scott et al. 2015). In a proof-of-concept retrospective propensity score-matched study, it was shown that Lenvatinib was associated with significantly improved OS (37.9 vs. 21.3 months; P<0.01), PFS (16.0 vs. 3.0 months; P<0.001) and ORR (73.3% vs. 33.3%; P<0.001). The study also showed that hepatic function deteriorated with repeated TACE (baseline ALBI score from –2.66 to –2.09; P<0.001) but was maintained in the group treated with Lenvatinib (baseline ALBI score from –2.61 to –2.61; P=0.254) (Fujiwara et al. 2023)

3.7 Sorafenib and Regorafenib

Sorafenib (7) (Nexavar®) is a biarylurea multitargeted kinase inhibitor. It inhibits VEGFR-2 and VEGFR-3 (Wilhelm et al. 2006). Sorafenib is an oral tyrosine kinase inhibitor with the ability to inhibit tumor cell proliferation and angiogenesis. It has been the first-line option for the group of patients with HCC since it received Food
and Drug Administration (FDA) approval in 2008 (Zeng et al. 2023) In addition, Regorafenib (8) (Stivarga®), a fluoro derivative of Sorafenib developed by Bayer (Wilhelm et al. 2004), inhibits angiogenic kinases VEGFR-1/3. Furthermore, it showed anti-proliferative activities on different cancer cell lines (Wilhelm et al. 2011). It acts on various tyrosine kinase receptors, including oncogenic, stromal, and angiogenic receptors. Moreover, Regorafenib is highly indicated in the treatment of colorectal cancer, especially in metastatic form. It is also indicated for gastrointestinal stromal tumors (GIST), and hepatocellular carcinoma (Baz et al. 2023)

On September 27, 2012, the FDA approved Regorafenib (8) for the previously treated metastatic colorectal cancer (mCRC) and then in February 2013, FDA expanded the approved use of Regorafenib to treat patients with advanced gastrointestinal stromal tumors (GIST) (DiGiulio et al. 2013).

![Chemical structure of compound 7 and 8](image)

4. VEGFR inhibitors under development

Chandrika et al (Chandrika et al. 2008), synthesized a series of 2,4,6-tri-substituted quinazoline derivatives. By screening these derivatives for anti-inflammatory and anticancer activities against U937 leukemia cell, it found that compound (9) was the most active one.
In 2012, Moreno et al. (Moreno et al. 2012), synthesized a series of sulfur and selenium quinazoline and pyrido[2,3-d]pyrimidine compounds and evaluated them for in vitro antiproliferative activity against different cell lines (CCRF-CEM), colon (HT-29), lung (HTB-54) and breast (MCF-7). The reference drugs were etoposide and cisplatin and the most potent and selective compounds against MCF-7 cells were compounds (10, 11 and 12) with GI$_{50}$ values below 10 micromolar.

Kovalenko and co-workers (Kovalenko et al. 2013) synthesized a series of N-aryl(alkaryl)-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)-thio]acetamides. The synthesized compounds were screened in vitro for their anti-proliferative activities. Compounds (13) and (14a-c) were the most active members.
In 2013, Kovalenko et al. synthesized a class of quinazoline derivatives as anticancer agents (Kovalenko et al. 2013). The synthesized compounds were screened for antitumor activity against leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate and breast cancer cell lines. Compound (15) was the most active one with GI$_{50}$ in micromolar concentrations. Non-small cell lung cancer (NCI-H522, GI$_{50}$=0.34), CNS (SF-295, GI$_{50}$=0.95), ovarian (OVCAR-3, GI$_{50}$=0.33), prostate (PC-3, GI$_{50}$=0.56), and breast cancer (MCF7, GI$_{50}$=0.52), leukemia (K-562, GI$_{50}$=0.41; SR, GI$_{50}$=0.29), and melanoma (MDA-MB-435, GI$_{50}$=0.31).

In 2014, 2-chloro-6,7-dimethoxy-4-substitutedanilinoquinazoline (16) elicited potential inhibitory effects on both VEGFR-2 and EGFR with IC$_{50}$ of 1.17 and 0.9 µM respectively (de Castro Barbosa et al. 2014).
Bozdag et al. (Bozdag et al. 2016) reported synthesis of benzenesulfonamides incorporating 2-mercaptoquinazolin-4-one tails of type (17). These sulfonamides were investigated as inhibitors of subtype II and XII of human carbonic anhydrase (hCA) (a transmembrane, tumor-associated enzyme also involved in glaucoma-genesis). The new sulfonamides were highly effective as hCA II and XII inhibitors.

\[
\text{derivatives (17a-k)}
\]

\[
\begin{align*}
\text{a) } R &= 6\text{-F} & \text{g) } R &= 8\text{-CH}_3 \\
\text{b) } R &= 6\text{-Cl} & \text{h) } R &= 6,8\text{-di-CH}_3 \\
\text{c) } R &= 7\text{-F} & \text{i) } R &= 8\text{-OCH}_3 \\
\text{d) } R &= 7\text{-Cl} & \text{j) } R &= 6,7\text{di-OCH}_3 \\
\text{e) } R &= 6\text{-I} & \text{k) } R &= 7\text{-OCH}_3 \\
\text{f) } R &= 6\text{-CH}_3
\end{align*}
\]

Derivatives of 3-benzyl-4(3H)-quinazolinones were synthesized and evaluated for their \textit{in vitro} antitumor activities (Al-Suwaidan et al. 2016). The results of this study indicated that compounds (18, 19, and 20) possess amazing broad spectrum antitumor activities with mean GI50 values nearly about 1.5 - 3.0- fold more potent than that of positive control, 5-FU.

\[
\begin{align*}
\text{(18)} & & \text{(19)} & & \text{(20)}
\end{align*}
\]
Zhao et al. designed and synthesized a class of 5-anilinoquinazoline-8-nitro derivatives that inhibit VEGFR-2 tyrosine kinase. The in-vitro cytotoxic activity assay and chick chorioallantois membrane assay showed that these compounds possess anti-tumor activity and anti-angiogenesis (Zhao et al. 2019).

\[\text{(21a) } R = \text{H} \]
\[\text{(21b) } R = 4-\text{OCH}_3 \]
\[\text{(21c) } R = 4-\text{F} \]

The synthesized compounds were evaluated for their anti-proliferative activities against a panel of three human cancer cell lines namely; hepatocellular carcinoma (HepG-2), breast cancer (MCF-7) and colorectal carcinoma (HCT-116) using MTT assay. Compound (22) has emerged as the most active member against HepG-2 and HCT-116 cells with IC\textsubscript{50} values of 3.97 ± 0.2, 4.83 ± 0.2 μg/ml, respectively (Mahdy et al. 2020).

\[\text{(22)} \]

All the synthesized compounds (23a-h) were tested in vitro for their cytotoxicity against two cancer cell lines, namely human breast cancer (MCF-7), human colon adenocarcinoma (Caco-2) as well as normal human embryonic cells (HEK-293), using the well-established [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based cell viability assay (Manhas et al. 2021).
A series of quinazolin-4(3H)-one based agents containing thiadiazole-urea were designed, synthesized, and biologically evaluated. The proliferation rate of PC3 (prostate cancer) cells was moderately reduced by compound (24) (IC$_{50}$ = 17.7 μM) which was comparable with sorafenib (IC$_{50}$ = 17.3 μM) (Faraji et al. 2021).

Some genetics codes had been detected in cancers of the breast, colorectal, liver, and other types of cancer. It has been intensively targeted at this cancer pathway therapies. In 2016, Peng et al. synthesized 2-(2-aminopyrimidine-5-yl)-4-morpholino-N-(pyridine-3-yl)quinazoline-7-amine (25) sequence of PI3K/mTOR inhibitors and anti-cancer activity against seven cancer cell lines were evaluated in vitro (Mohamed et al. 2021).
Benzoimidazoquinazoline (26) were synthesized and tested as anticancer lead molecules that modulate the activity of VEGFR, CD34, and microR-122 (Hazem et al. 2021).

![Chemical structure of 26]

Biological results showed that compounds 27a and 27b are of particular interest as anticancer agents targeting VEGFR-2 kinase in 2022 Abdallah et al. In addition to their considerable inhibition of VEGFR-2, they have shown promising antitumor effects especially against hepatocellular cancer cell line (HepG2) with high degree of selectivity (Abdallah et al. 2022).

![Chemical structure of 27a and 27b]

In 2023, Mabrouk et al. synthesized thalidomide analogs. The candidates showed potent in vitro anti-proliferative activities against three human cancer cell lines, namely hepatocellular carcinoma (HepG-2), prostate cancer (PC3), and breast cancer (MCF-7). Compound (28) was the most potent candidate, with an IC₅₀ of 2.03 ± 0.11, 2.51 ± 0.2, and 0.82 ± 0.02 µg/mL compared to 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µg/mL for thalidomide against HepG-2, PC3, and MCF-7 cells, respectively (Mabrouk et al. 2023).
In 2023, Zari et al. examined the antiproliferative activities of some quinazoline derivatives against a panel of three human cancer cell lines (A549, SW-480, and MCF-7) using MTT assay. Among the tested compounds (29) showed the highest antiproliferative activities against the tested cell lines. This compound could also induce apoptosis in A549 cell line in a dose dependent manner (Zare et al. 2023).

The molecule (30) displayed a potent cytotoxic activity with IC$_{50} = 5.4$ nM against the VEGFR-2 kinase enzyme in 2023 by Zayed et al. It also showed 130% growth inhibition on the full NCI panel of cancer cell lines when exposed to in vitro antiproliferative assay (Zayed et al. 2023).
The antiproliferative assay of the synthesized members by Gaber et al. in 2023 against HepG2 and HCT-116 cancer cell lines revealed that compounds 31 showed promising cytotoxicity results with IC$_{50}$ 15.16 μM. Also, the same compound exhibited significant DNA binding affinity with IC$_{50}$ values of 10.25 μM (Gaber et al. 2023)

REFERENCES

expression (spiral-3d study)." Therapeutic advances in medical oncology **15**: 17588359231177022.

w. h. organization (March,2021). "Cancer statistics ".

مثبطات مستقبلات عامل النمو البطاني الوعائي -2 والعوامل المضادة للسرطان القائمة على الكينازولين

إسلام عطيفي، حلمي صقر، أرزق عيد، علاء علوان

قسم الكيمياء الطبية الدوائية ومصمم الأدوية، كلية الصيدلة (البنين)، جامعة الأزهر، القاهرة، 11884، مصر

البريد الإلكتروني للباحث الرئيسي: helmysakr@azhar.edu.eg

مثبطات مستقبلات عامل النمو البطاني الوعائي -2 (VEGFR-2) هي أهداف بيولوجية حاسمة لتطوير أدوية جديدة مضادة للسرطان. يلعب الكينازولين أيضا دوراً مهماً كواحد من عناصر البناء للعديد من الأدوات VEGFR-2، والدوية المضادة للسرطان القائمة على الكينازولين. وقدنا مثبطات VEGFR-2 التي تخضع الآن للتقييم السريري، مثل جيفيتينيب، وارلوتنيب، وفاكتينيب، وليفافينيب، وكابوزانتينيب، ونورافينيب، وريجورافينيب في دراسات. بالإضافة إلى ذلك، تم إدخال مثبطات VEGFR-2 في التطوير.

الكلمات المفتاحية: مستقبلات عامل النمو البطاني الوعائي -2 (VEGFR-2) الكينازولين، عوامل مضادة للسرطان