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ABSTRACT

The adverse effects of salinity on some physiological and biochemical responses of
flax (Linum usitatissimum) seedlings grown at 100, 200, and 300 mM NaCl were studied.
Salinity induced marked decreases percentage of germination, reduction in nucleic acids, as
well as membrane stability index (MSI) of salinized flax seedlings. Data also revealed that
salinized flax seedlings accumulated high levels of Na, Cl, P and Mg while K and Ca ions
were significantly decreased. Application of some vitamins (folic acid, ascorbic acid and
cobalamin) counteracted the adverse effects of salinity. The mechanism of these vitamins on
alleviating salt stress hazards might be mediated by stimulating the de novo synthesis of new
set of low molecular weight proteins, reduction in some ions (Na and CI) coupled with
increases in the accumulation of others (K, Ca, P and Mg), consequently vitamins maintain
high percentage of MSI throughout the experiment, thereby enhanced the capacity for
germination under salt stress conditions.

Key words: flax; salinity; vitamins; protein profile; membrane stability index.

INTRODUCTION

Salt stress, like other abiotic stresses, can lead to oxidative stress through the increase
in ROS which can damage essential membrane lipid as well as protein and nucleic acids
(Noctor and Foyer, 1998). Maintenance of cellular ion homeostasis is fundamental to
physiological activities in plants. The germination of the seed is an appropriate stage in the
life of plants at which seeds are particularly sensitive to saline environment; in fact it has
been found that the sensitivity to salt may be greater during germination than during seedling
growth (Howell, 1998). A decline in seed germination percentage with increasing salinity
was also reported in Atriplex spp (Ungar, 1996) and in Beta vulgaris (Ghoulam and Fares,
2001). Moreover, salinity stress slows down the rate of germination or inhibits it completely
as recorded by (Radi et al., 1988; Nuran and Husna, 2002).

The deleterious effect of salinity was suggested as a result of water stress, ion
toxicity, ion imbalance, or combination of these factors. Mineral contents of many plants
were found to be altered under salinity stress conditions particularly during seed germination
(Izzo et al., 1991; Lutts et al., 1996). Indeed, salinity causes nutrient imbalances,
consequently maintaining a suitable K/Na ratio (Lacerda et al., 2003) results in protection
against the formation of ROS.

Relative accumulation of sodium in plant cell may induce some adaptation to high
osmotic potential but excess sodium may be toxic as indicated by Lechno et al. (1996);
Cicek and Cakirlar, (2002); Faheed et al. (2004) and Yildirim et al.( 2006).

ROS may also damage macromolecules such as DNA and proteins (Pastori and
Foyer, 2002). Regulation of cellular ion homeostasis under salt stress is controlled by
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various kinds of membrane protein, such as channels or pumps (Serrano and Rodrigguez-
Navarro, 2001). Several investigations have shown the synthesis of new proteins in many
species when subjected to salinity stress (Hurkman and Tanaka, 1987; Singh et al., 1987).
The synthesis of several proteins located in either membrane fraction (Hurkman et al.,
1989), cytosol (Zhao and Herrmann, 1992; Reviron et al., 1992), chloroplasts (Winicov
and Button, 1991) or intercellular spaces (Esaka et al., 1992) was found to be either up- or
down- regulated by osmotic stress. These specifically synthesized proteins under salt stress
appear to have a role in providing tolerance or adaptation to the plants. However, the overall
mechanism of how these proteins could provide adaptation is not yet clear. Ericson and
Alfinito (1984) reported the accumulation of 26 and 32-kDa proteins in salinized tobacco
cells. The 26-kDa  protein (osmotin) is specifically synthesized and accumulated in cells
undergoing osmotic adjustment to salt or desiccation stress, It is believed that osmotin
provids osmotic adjustment to the cells either by inducing the accumulation of solutes or by
providing certain metabolic alterations in the cell, which may be helpful in osmotic
adjustment (Singh et al., 1987).

Hong-Bo et al. (2005) reported that, some salt induced proteins called late
embryogenesis abundant (LEA) proteins (M.wt: 10-30 kDa) which may act as
osmoprotectants and / or antioxidants against severe salt stress.

Amelioration of the adverse effects of NaCl salinity by addition of some vitamins
have been reported by Li and Wang (1991) on Zea mays; Shalata and Neumann (2001) on
Lycopersicum esculentum; Khattab (2001) on Oryza sativa; Ali (2002) on Ricinus
communis; El-Bassiouny et al. (2005) on Vicia faba; Hamad and Hamada (2005) on
Triticum aestivum; El-Tohamy and El-Gready (2007) on snap bean plants and Azooz
(2009) on Hibiscus sabdariffa.

The role of ascorbic acid in alleviating hazards caused by salinity has been reported
by many investigators (Mozafar and Oertli, 1992; Zhang and Kirkham, 1996; Khattab,
2001; Hamada and Hamada, 2005; Bassuony et al., 2008). However, the effect of
exogenous application of folic acid and cobalamin as active oxygen scavengers have not
been investigated to present date.

The objective of this study is to asses the possible roles of vitamins in the defense
against ROS under salt stress conditions. Moreover, vitamins play an essential role in ion
homeostasis and osmoregulation under salt stress; this may provide further information on
repairing the injurious effects of salinity by vitamin applications.

MATERIALS AND METHODS

Pure strain of flax seeds (Linum usitatissimum L) cultivar, Sakha 2 was obtained
from the Agriculture Research Center, Fiber Crops Research Section, Giza, Egypt.
Preliminary experiments were done to test the salt sensitivity of flax seeds as well as to
choose the proper concentrations of folic acid, ascorbic acid and cobalamin. Three different
concentrations of sodium chloride were chosen (100, 200, and 300 mM NacCl in ¥% strength
Hogland's solution). The proper concentrations of folic acid (vitamin B9), ascorbic acid
(vitamin C) and cobalamin (vitamin B12) were 20 uM, 0.5 mM, and 2 puM respectively. The
seeds were surface sterilized by dipping in 1% sodium hypochlorite solution for 5 minutes,
then rinsed thoroughly with distilled water and germinated in Petri dishes on filter paper
(Whatman No.1) saturated with 10 ml water, vitamins and / or NaCl solutions. The solutions
were replaced every 2-3 days.
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Seedlings were exposed to normal day length and natural temperature (about 22/13
4+2°C and 11 h photoperiod). The number of germinated seeds was recorded daily through
the experimental period. Seedlings were collected after 12 days at the end of the experiment
for measuring some growth parameters in terms of fresh and dry weights of flax seedlings,
mineral ion contents (Na, K, Ca, Cl, Mg and P), DNA and RNA, protein profile, as well as
membrane stability index (MSI).

Protein electrophoresis

The total soluble proteins were separated on SDS-polyacrylamide gel and visualized
by Coomassie blue stain to estimate the changes in protein profiles induced by NaCl stress in
the absence and presence of vitamins. Electrophoretic determination of total protein was
estimated according to their molecular weights by denatured sodium dodcyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE) according to the method described by
Laemmli (1970) and modified by Studier (1973).

Determination of membrane stability index (MSI).
MSI was measured as described by Sairam et al. (1997).
Quantitative estimation of nucleic acids

The method suggested by Ogur and Rosen (1950) for the extraction of nucleic acids
was adopted in the present investigation.

Determination of certain elements

The method of extraction used in this investigation was essentially that of Chapman
and Pratt (1961), sodium, potassium, and calcium were estimated according to the method
described by Ranganna (1977) using atomic absorption spectrophotometer (Pekrin Elmer
USA 3100). Phosphorous was estimated according to the method described by Humphries
(1956). Magnesium can be calculated by multiplying the values of phosphorus by the factor:
0.0784 according to the method described by Word and Johnston (1962). Chloride ion
concentration was measured by silver nitrate titration method as described by Jackson and
Thomas (1960).

Statistical Analysis

Analysis of variance was conducted using ANOVA one way variance test
using Microsoft Excel 2000. Statistical probability values were calculated
to quantify the levels of significance for each treatment. The values of
analysis of seedlings grown under 100, 200 and 300 mM NaCl were used as a
reference controls for vitamin treated stressed ones, as well as they
compared also, with the untreated control. Each treatment is an average of
three different measurements.

RESULTS

Changes in percentage of germination

It is clearly shown that NaCl brought about a marked depressive effect on seed
germination. Salinity stress delayed seed germination and reduced germination percentage
particularly at high salinity levels (200 mM NaCl) as compared with non salinized control.
Lower concentration of NaCl (100 mM) reduced the percentage of germination to 47%. This
reduction was positively related to NaCl concentrations (fig.1). The germination was
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completely inhibited in response to the higher concentration of NaCl (300 mM); non of these
seeds could germinate during the incubation period. Flax seeds that fail to germinate at 300
mM NacCl, responded markedly to folic acid, ascorbic acid or cobalamin treatment which
caused 67%, 34% and 33% respectively increase in germination percentage as compared
with their corresponding control grown under sever salt stress (300 mM NacCl). Salinized
seeds treated with any of the vitamins used in the present work germinated by the end of
incubation period (Plates 1&2).
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Figure (1): Effects of folic acid, ascorbic acid or cobalamin on the percentage of
germination of Linum usitatissimum seeds grown under salt stress conditions.
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Plate (1): Germination and growth responses pattern of Linum usitatissimum seeds grown
under sever concentration of NaCl (300 mM).
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Plate (2): Germination and growth responses pattern of Linum usitatissimum seeds grown
under sever salt stress conditions (300 mM NacCl) in the absence and presence of
folic acid, ascorbic acid or cobalamin.

Changes in biomass and membrane stability index (MSI)

Data in table (1) revealed that salt stress induced significant reduction in both fresh
and dry masses of salinized flax seedlings particularly at the high salinity levels. At 200 mM
NaCl the reduction in fresh and dry matter yields of salinized flax seedlings was 68.7% and
45.3% respectively below the control value.
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Table 1 Effects of folic acid, ascorbic acid or cobalamin on some growth parameters of
Linum usitatissimum seedlings grown under salt stress conditions. Each value is a
mean of ten replicates +SE

NaCl | Fresh weight | Dry weight (MSI)
Treatments (mM) | (g/seedling) | (9/seedling) Membrane stability
index (%)

000 | 1.387+0.6 | 0.075+0.02 795+ 2.4
NaCl 100 | 0.649+0.2° | 0.064+0.01 | 25.0 +1.3°
200 | 0.434+0.1° | 0.041+0.01% | 214 +1.1°
300 | 0.299+0.1°| 0.010+0.01° | 05.1 +0.4°
100 | 0.780+0.3 | 0.080+0.03 | 66.6 +3.5°
NaCl + folicacid | 200 | 0.847+0.2% | 0.130+0.04° | 50.0 +2.1°
300 | 0.380+0.1 | 0.068+0.01* | 18.0 + 0.9°
100 | 0.815+0.3 | 0.115+0.03% | 526 +2.7°
NaCl + ascorbic | 200 | 0.896+0.4° | 0.103+0.02° | 33.3 +1.8°
acid 300 | 0.332+0.1 | 0.061+0.01% | 15.0 +0.7°
100 | 0.856+0.2 | 0.136+0.04° | 50.0 +2.2°
NaCl + cobalamin | 200 | 0.786+0.3% | 0.121+0.03° | 40.2 +1.9°
300 | 0.341+0.1 | 0.062+0.01% | 11.1 +0.7°

Values with a superscript are significant different from the control. Letter a =* at P>0.05, b
=** at P<0.01, ¢ =*** at P <0.001, and absence of letter = non significant.

Vitamin treatments greatly reduce the inhibitory effects of salinity on growth of flax
seedlings. This stimulatory effect was more pronounced in cobalamin-treated flax seeds,
such effect reaches about 31.8% and112.5% increase in fresh and dry weights at 100 mM
NCI compared to the reference control.

Membrane stability index (MSI) was estimated as electrolyte leakage. The results
revealed that, membrane stability index significantly decreased in salinized flax seedlings.
Lower dose of NaCl (100 mM) reduced the percentage of MSI by 68.5% below the control
value. This reduction was positively related to the concentrations NaCl. Vitamin treatments
significantly increased the MSI percentage particularly in folic acid treated salinized
seedlings.

Changes in Protein banding Pattern

Scanning of the gel revealed the appearance of a number of polypeptide bands
ranging from 4-14 polypeptide bands (Plate 3 & Table 2).
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Plate (3): Electrograph SDS-PAGE of total soluble protein extracted from Linum
usitatissimum seedlings grown under different concentrations of
NaCl in the absence and presence of folic acid, ascorbic acid or cobalamin.

M : Marker

Lane 1: 000 mM NaCl Lane 2 : 100 mM NaCl

Lane 3 : 200 mM NaCl Lane 4 : 300 mM NaCl

Lane 5: 100 mM NaCl + ascorbic acid Lane 6 : 100 mM NaCl + cobalamin
Lane 7 : 100 mM NaCl + folic acid Lane 8 : 200 mM NaCl + ascorbic acid
Lane 9 : 200 mM NaCl + cobalamin Lane 10 : 200 mM NacCl + folic acid

Lane 11 : 300 mM NacCl + ascorbic acid Lane 12 : 300 mM NaCl + cobalamin
Lane 13 : 300 mM NacCl + folic acid

Table (2): Relative concentration (band %), molecular weight (M.wt) and mobility rate (Rm)
of the SDS-PAGE of total soluble protein extracted from Linum usitatissimum
seedlings treated with folic acid, ascorbic acid or cobalamin and exposed to
different concentrations of NaCl.

Band No Treatment and Band % Rm | M.wt.
1 2 3 4 5 6 7 8 9 10 11 12 13 kDa

1 - - 440 | 3.01 - 20.07 | 11.70 | 10.08 | 20.03 | 20.03 | 3.02 | 480 | 6.72 | 0.02 | 209.3

2 . - . 3.38 - - - - - - - - - 007 [ 977

3 . - . 3.07 - - - - - - - - - 0.09 | 804

4 3024 | 2035 | 333 | 3.16 | 2031 [ 1862 | 1039 | 1372 [ 1311 [ 1507 | 802 | 384 [ 582 | 012 | 759

5 N - 318 | 3.07 - B - - B - B B - 0.15| 683

6 N - 201 | 2.82 - B - - B - B B - 0.18 | 654

7 19.34 [ 39.05 | 2292 | 852 [ 10.19 | 1968 | 1293 | 9.72 | 1468 | 2049 | 7.07 | 450 | 541 | 023 [ 582

38 - - 547 | 3.09 - - - - - - - - - 024 | 554

9 . - 290 | 3.10 | 10.04 | 812 | 834 | 10.06 | 16.14 | 10.09 | 13.00 | 8.18 | 9.36 | 0.27 [ 45.0

10 . - 3454 | 31.59 - . - - - - - - - 032 | 320

11 . - 354 | 3.38 - . - - - - 1015 939 | 7.29 [ 039 [ 285

12 - 13.03 | 340 | 1259 224 | 6.95 | 1650 | 807 | 7.54 | 8.04 | 3639 | 34.72 [ 3897 | 040 | 26.3

13 - 9.30 | 6.00 | 9.00 - B - - B - B B - 049 | 237

14 1969 [ 10.96 | 7.41 | 10.04 [ 39.17 | 12.70 | 26.14 | 35.55 | 20.21 | 14.14 | 13.27 | 2652 | 1482 | 054 [ 200

15 30.73 | 7.00 - B - B - - B - B B - 069 [ 150

16 - - - . 18.05 | 13.86 | 14.00 [ 1280 | 823 | 1212 | 9.08 | 8.00 | 1161 | 0.74 6.2

No. of 4 6 12 14 6 7 7 7 7 7 8 8 8
Bands/lane
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Three common protein bands with M.wt: 75.9, 58.2 and 20.9 kDa were detected in
the control and in response to the treatments with the three applied concentrations of NaCl in
the absence and presence of vitamins.

It is clearly shown from table (2) that, the low salinity level resulted in the
appearance of two new protein bands (M.wt: 26.3 and 23.7 kDa), the moderate salt
concentration (200 mM NacCl) resulted in the appearance of 9 polypeptides bands (M.wt:
209.3, 68.3, 65.4, 55.4, 45.0, 32.0, 28.5, 26.3 and 23.7 kDa), six of which disappeared in
response to vitamin treatments (M.wt: 68.3, 65.4, 55.4, 32.0, 28.5 and 23.7 kDa). At high
salinity level (300 mM NacCl), 11 polypeptide bands were detected (M.wt: 209.3, 97.7, 80.4,
68.3, 65.4, 55.4, 45.0, 32.0, 28.5, 26.3 and 23.7 kDa), seven of which disappeared in
response to vitamin treatments (M. wt: 97.7, 80.4, 68.3, 65.4, 55.4, 32.0 and 23.7 kDa).

Moreover the electrophoretic pattern confirms the specific accumulation of low
molecular weight protein (M.wt: 6.2 kDa) in salinized flax seedlings treated with folic acid,
ascorbic acid or cobalamin.

Changes in mineral composition

The results revealed that salinity is capable of inducing a general increase in Na, Cl,
P and Mg ions while K and Ca ions were significantly decreased as salinity levels increased.
Seed treatment with any of the applied vitamins was generally of depressive effect on the
accumulation of Na as well as CI ions. However, they have stimulatory effects on the
accumulation of K, Ca, Mg and P ions as well as K/Na, Ca/Na, Mg/Na and P/Na ratios.

The of reduction in Na ions level due to folic acid treatment in salinized flax
seedlings was from 44.0% to 65.1%, while in case of ascorbic acid treatment it was from
41.3% to 50.4% below their corresponding controls. With respect to cobalamin treatment,
the decrease in Na ions level below the control values was 61.7%, 56.7% and 51.6% at
different concentrations of NaCl (Table 3).

Table 3 Effects of folic acid, ascorbic acid or cobalamin on mineral composition of Linum
usitatissimum seedlings grown under salt stress conditions. Values are listed are
expressed as mg / g dry weight. Each value is a mean of three replicates £SD

NaCl Na K Ca Mg P Cl
Treatments (mM)
000 16.1#0.9 | 72.7%6.9 | 62.3%#5.7 | 0.68+0.1 | 8.7+1.0 | 6.3x0.4
100 | 58.242.8° | 70.246.5 | 51.843.7 | 1.27+0.2° | 16.2+1.1* | 37.9+2.9°
NaCl 200 81.3+7.5° | 60.2+4.3% | 49.2+3.1° | 1.38+0.4° | 17.6+1.3" | 48.5+4.6°
300 | 106.249.8°| 38.7+2.1° | 46.1+3.1° | 1.52+0.5° | 19.3+1.5° | 64.5+7.6°
100 20.3+1.2° | 128.149.9° | 59.1+4.2 | 1.67+0.4 | 21.3+2.1 | 30.8+2.4%
NaCl+ Foli 200 455+2.1° | 99.9+8.8" | 81.5+7.8° | 1.61+0.5 | 20.5+1.8 | 43.0+4.2
a oi1c 300 | 52.142.4° | 99.1+49.8° | 62.144.9° | 1.54+0.4 | 19.6+1.6 | 44.8+4.3"
acid
100 | 31.5+1.7° | 171.1#12.0° | 50.1#¢5.2 | 2.26+0.9° | 28.8+1.9° | 9.0+1.2°
NaCl+ b 200 | 40.3+2.4° | 139.2+10.2° | 54.2+4.9 | 1.59+0.4 | 20.3+1.7 | 9.5+1.3°
4 35-201” 1€ | 300 | 62.3+4.6° | 85.0£7.8° | 53.4%6.0 | 1.47+0.3 | 18.8£1.8 | 18.6+2.0°
acl
100 | 22.3#1.4° | 87.249.4° | 49.3+3.2 | 1.73+0.4° | 22.1#1.3° | 9.5¢1.1°
NaCl+ cobalami 200 | 35.241.4° | 90.5+48.5" | 82.3+6.9° | 1.59+0.3 | 20.4+1.5 | 16.6+1.4°
a cobalaminm| 300 | 51443.6° | 96.049.3° | 61.2454° | 1.58+0.2 | 20.1+1.2 | 43.243.6
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Values with a superscript are significant different from the control.
Letter a = at P > 0.05, b =xx at P < 0.01, ¢ =xkk at P < 0.001, and
absence of letter = non significant.

In addition, the reduction in the CI ion concentrations due to vitamin treatments was
more pronounced in ascorbic acid treatment where it reached about 71.2% below its
corresponding control (300 mM NacCl).

It is worthy to note that, the maximum increase of K ion levels measured in salinized
flax seedlings treated with ascorbic acid was 131.2% compared to its corresponding control
(200 mM NaCl). However, at the same level the increase in K in response to folic acid or
cobalamin treatment was 65.9% and 50.0% respectively compared with their corresponding
control.

Changes in nucleic acid contents

Salinity induced a significant reduction in DNA and RNA contents of flax seedlings
(Table 5). This reduction was salt concentration dependant. A non- significant reduction in
RNA content was observed in flax seedlings exposed to 100 mM NaCl, The decreases in
RNA levels were about 6.4%, 19.0% and 25.3% at 100, 200 and 300 mM NacCl respectively
below the control value.

Similarly the decrease in DNA content was about 38.4%, 41.1% and 52.8%
respectively at the same salinity levels. The application of folic acid, ascorbic acid or
cobalamin alleviated the inhibitory effects of NaCl on RNA synthesis but significantly
reduced DNA level as being compared with the corresponding control.

DISCUSSION

The present study suggests that, flax seeds tolerated NaCl salinity up to 200 mM
NaCl; the germination was completely inhibited at 300 mM NaCl. Salinity stress inhibits
seed germination either due to accumulation of toxic ions (Ramagopal, 1988); or through
osmotic stress which reduce the uptake of water (Sharma, 1990). This is the case in our
study it was clearly shown that under salinity stress Na was sharply accumulated in salinized
flax seedlings while K concentration as well as K/Na, Ca/Na, Mg/Na and P/Na ratios were
significantly decreased as salinity levels increased (Tables 3 and 4). On the other hand, the
completely non germinated flax seeds (at 300 mM NaCl) showing an amazing capacity for
recovery and germination when exposed to folic acid, ascorbic acid or cobalamin treatments
(Platesl & 2). It is interesting to note here that vitamin treatments greatly nullify the
inhibitory effects of salinity on growth of flax seedlings (Table 1). Salt stress leads to
changes in growth, morphology and physiology of roots that would in turn change water and
ion uptake (Alpaslan and Gunes, 2001; Alves da costa et al., 2005; Salter et al., 2007).
Reduced rate of new cell production may make additional contributions to inhibition of
growth (Boscaiu et al., 2005). In this respect ascorbic acid is implicated in regulation of
root elongation and cell wall expansion of many plant species (Noctor and Foyer, 1998).
Folic acid and cobalamin are known to be necessary for cell division (Andrew et al., 2000;
Smith et al., 2007).
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Table 4 Effects of folic acid, ascorbic acid or cobalamin on K/Na, Ca/Na, Mg/Na and P/Na
ratios of Linum usitatissimum seedlings grown under salt stress conditions. Values
are listed are expressed as mg / g dry weight.

NaCl | K/Na Ca/Na Mg/Na P/Na
Treatments (mM)
000 4.52 3.87 0.04 0.54
100 1.21 0.89 0.02 0.27
NaCl 200 0.74 0.61 0.01 0.21
300 0.36 0.43 0.01 0.18
100 6.31 2.91 0.08 1.05
NacCl + folic acid 200 2.19 1.79 0.03 0.45
300 1.90 1.19 0.02 0.37
100 5.43 1.59 0.05 0.91
NaCl + ascorbic 200 3.45 1.34 0.03 0.55
acid 300 1.36 0.86 0.02 0.30
100 3.91 2.21 0.07 0.94
NaCl + cobalamin | 200 2.57 2.21 0.04 0.58
300 1.86 1.19 0.03 0.39

Membrane stability index has been used to assess tolerance of various plant species
(Sudhakar et al., 2001; Eraslan et al., 2007: Azooz, 2009).

The membrane injury in salinized flax seedlings was concomitant in most cases with
sharp decrease in membrane stability index (MSI). MSI was subjected to a significant
increase in salinized flax seedlings exposed to folic acid, ascorbic acid or cobalamin (Table
1). The maintenance of high percentage of MSI throughout the experiment show that
vitamin-treated salinized flax seedlings can overcome hazards caused by salt stress.

One approach to understanding the ability of flax seedlings to tolerate salt stress has
been to identify stress-induced changes of individual proteins under the assumption that
stress adaptation results from alterations in gene expression (Natarajan et al. 1996).

The observed changes in protein profile and consequently the physiological
responses suggested that the changes in protein pattern might play a critical role in the
response of flax seedling to salt stress (Table 3). The present data revealed the presence of
three common protein bands (M.wt: 75.9, 58.2 and 20.9 kDa) detected in the control and in
response to the various concentrations of NaCl in the absence and presence of the vitamins
which might be specific for flax seedlings irrespective of the treatments. In addition sever
salt stress (300 mM NaCl) induced the de novo synthesis of salt specific polypeptides (M.wt:
209.3, 97.7, 80.4, 68.3, 65.4, 55.4, 45.0, 32.0, 28.5, 26.3 and 23.7 kDa). These salt specific
proteins might be involved in salt tolerance and / or a member of LEA family which are
acting as antioxidants; membrane and protein stabilizers (De Abreu and Mazzafera, 2005).
It is suggested that not all proteins produced in saline condition are correlate with stress
tolerance, which might be the case in our study. In spite of the detection of 26 and 32-kDa
proteins under salt stress (200 and 300 mM NacCl), the membrane injury in salinized flax
seedlings was concomitant with sharp decrease in membrane stability index (MSI).



Az. J. Pharm Sci. Vol. 45, March, 2012 191

Consequently, these polypeptides may not have a function in the process of salt adaptation in
flax seedlings grown under sever salt stress conditions.

The new protein bands which accumulated in response to salt stress and disappeared
in the vitamin treated seedlings (M.wt: 97.7, 80.4, 68.3, 65.4, 55.4, 32.0 and 23.7 kDa) might
be responsible for the observed decrease in MSI under sever salt stress. The disappearance of
some high molecular weight proteins in response to all the previous treatments might be
attributed to the increase of the synthesis of other proteins (Robinson et al., 1990). The
greatest increase in the concentration (measured as band intensity) of the low molecular
weight protein (M.wt: 6.2 kDa) in salinized flax seedlings treated with any of the vitamins
was concomitant with the better performance of flax seedlings grown under saline conditions
(Table 2). The most characteristic feature of vitamin treatments is their role on stimulating
the biosynthesis of new set of low molecular weight proteins in addition to the disappearance
of others. These proteins might be enzymes and / or phytohormone receptors (Napeir and
Venis, 1990; Dunn, 1993).

The accumulation of ions in different plant species facilitate the osmotic adjustment
and increase the tolerance of these plants to saline environment. In the present study, it was
clearly shown that under salinity stress Na was sharply accumulated in salinized flax
seedlings while K concentration as well as K/Na, Ca/Na, Mg/Na and P/Na ratios were
significantly decreased as salinity levels increased (Tables 3 and 4). These results are in
confirmatory with the results obtained by many authors who found that salt stress was found
to alter the mineral content of many plants particularly during germination. Salinity stress
frequently induces an increase in Na and Cl as well as a decrease in K and Ca concentrations
(Izzo et al., 1991; Lutts et al.,, 1996; Alpasian and Gunes 2001; Inal, 2002). It was
suggested that, the effect of salinity on mineral ions was due to decrease in leaf water
potential, relative water content, and water retention capacity concurrently with increased
water saturation deficit (Kabir et al., 2004). The observed increase in Na might be attributed
to the fact that, under salinity stress the uptake of Na ions was increased, while the contrary
was observed with respect to K ions. Also, the competition between potassium and sodium
has been reported (Yildirim et al., 2006; Roussos et al., 2007; Lépez et al., 2008). The
antagonistic relation between Na and K ions indicated that, the high levels of Na ions
generated a kind of competition on the level of sites of K ions absorption and thus limited the
absorption of K (Rejili et al., 2007). The high content of Na could disrupt the nutrient
balance, thereby causing specific ions toxicity despite disturbing osmotic regulation.While
the reduction in K concentration could inhibit growth by reducing the capacity for osmotic
adjustment and turgor maintenance or by adversely affecting metabolic functions (Ashraf
and Harris, 2004; Lopez et al., 2008; Inal et al., 2009).

There was a beneficial effect of vitamin treatments which was reflected in the
reduction in Na and Cl and increases in K, Ca, Mg, and P contents. Consequently K/Na,
Ca/Na, Mg/Na and P/Na ratios (Tables 3 and 4). This may represent a tool exerted by the
vitamin-treated plants to partially overcome the toxic effect of NaCl during salt stress.

There are many reports indicating the importance of adequate levels of Ca in
alleviating the deleterious effects of salinity on plant growth (Sivritepe et al., 2003).
Moreover, calcium """ to limit intercellular Na ions accumulation by regulating processes
that restrict influx and enhance efflux of these cations across the plasma membrane (Pardo
et al., 1998). On the other hand, one of the mechanisms of damage by salt is through
displacement of Caions from functional sites as reported by Jeschke et al. (1986).

Under salt stress, protecting the DNA was a priority which is confirmed by the data
reported by Hasegawa and Bressan (2000) Hamed (2004). The results observed in the
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present work and those obtained by many other investigators show that, salinity disturbed
nucleic acid metabolism (Table 5). Both DNA and RNA contents were markedly decreased
with the increase in the applied NaCl doses. The reduction of both DNA and RNA at
injurious levels of NaCl might be due to its effects on the inhibition of synthesis and
intensification of break down (ABo-Kasssem, 2006). The results obtained in the present
work showed that folic acid, ascorbic acid or cobalamin alleviated the inhibitory effects of
NaCl on RNA production but did not evoke the same response in case of DNA. Enhanced
ascorbate content was not itself sufficient to stimulate DNA production. Similarly this is the
case in folic acid and cobalamin treated seedlings (Table 5). Consequently, one can say that
vitamins regulate DNA synthesis at the genome level (Noctor and Foyer, 1998).

Table 5 Effects of folic acid, ascorbic acid or cobalamin on nucleic acid contents of Linum
usitatissimum seedlings grown under salt stress conditions. Values are listed are
expressed as mg / g dry weight.

Each value is a mean of three replicates +SE

NaCl RNA DNA
Treatments (mM)

000 5780+ 14.0 280.7 5.5
NaCl 100 5410+ 12.4 172.7+9.5°
200 4680+ 10.1° 165.4 + 8.4°
300 4320 +10.3° 132.4+7.3°
100 6910 + 11.6° 1321+ 7.2°
NaCl + folic acid 200 6510 + 14.9° 107.3+8.4°
300 5120 + 12.8° 101.4 + 7.0
100 6201 + 18.9° 145.1 + 6.4°
NaCl + ascorbic 200 6108 + 16.4° 1185+ 7.8
acid 300 5822 + 13.2° 115.2 +8.2°
100 6690 + 14.5° 130.1 £ 7.9°
NaCl + cobalamin 200 6652 + 18.2° 1133+ 7.7°
300 5690 + 12.2° 110.1 £ 7.3

Values with a superscript are significant different from the control.
Letter a = at P > 0.05, b =%k at P < 0.01, ¢ =%tk at P < 0.001, and
absence of letter = non significant.

In conclusion, salinized flax seedlings were thus ill equipped to face salt stress. The
mechanism of these vitamins on alleviating salt stress hazards of flax seedlings might be
mediated by stimulating the de novo synthesis of new set of low molecular weight proteins,
reduction in some ions (Na and ClI) coupled with increases in the accumulation of others (K,
Ca, P and Mg) and consequently the maintenance of high percentage of MSI throughout the
experiment.
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